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[1] ‘‘Science autonomy’’ refers to exploration robotics technologies involving onboard
science analysis of collected data. These techniques enable a rover to make adaptive
decisions about which measurements to collect and transmit. Science autonomy can
compensate for limited communications bandwidth by ensuring that planetary scientists
receive those images and spectra that best meet mission goals. Here, we present the results
of autonomous science experiments performed in the Atacama Desert of Chile during the
Life in the Atacama (LITA) rover field campaign. We aim to provide an overview of
autonomous science principles and examine their integration into the LITA operations
strategy. We present experiments in four specific autonomous science domains:
(1) autonomously responding to evidence of life with more detailed measurements;
(2) rock detection for site profiling and selective data return; (3) tactical replanning to
efficiently map the distribution of life; (4) detecting novel images and geologic unit
boundaries in image sequences. In each of these domains we demonstrate improvements
in the quality of returned data through autonomous analysis of imagery.
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1. Introduction

[2] Communication with planetary rovers is characterized
by low bandwidth and long latency. Rovers’ increasing
speed and mobility will intensify this communication bot-
tleneck. Future generations of rovers will travel long dis-
tances per command cycle; D. Wettergreen et al.
(unpublished manuscript, 2006) regularly demonstrated
traverses over five kilometers. These ‘‘over-the-horizon’’
traverses permit broad surveys of regions containing mul-
tiple geologic and environmental units. However, scientists
planning segments of the traverse that are over the horizon
must rely on orbital imagery alone to schedule data collec-
tion actions. Moreover, bandwidth constraints prevent the
return of detailed measurements covering the entire traverse.
Planned bandwidth upgrades to the Deep Space Network
will not keep pace with improvements in rover mobility and
navigation; this risks situations where most of the terrain
visited by the rover is never seen by scientists. Thus the
current strategy of sending an explicit command sequence
for each measurement scales poorly to long-range rovers.
[3] ‘‘Science autonomy’’ refers to exploration robotics

technologies involving onboard science analysis of collect-

ed data [Gilmore et al., 2000; Gulick et al., 2001; Castaño
et al., 2003; Smith et al., 2005]. This onboard analysis
addresses the communication bottleneck in several ways.
First, it permits the rover to make immediate, adaptive data
collection decisions in response to its own observations. In
this way it can direct finite time and energy resources
toward observing the most significant features. Rovers
employing adaptive data collection can obviate the need
for return trips in later command cycles. Return trips are
particularly costly because of accumulated localization
error; returning to a single specific target can easily require
multiple command cycles.
[4] In addition to adaptive sampling, spacecraft equipped

with onboard data understanding can help prioritize data for
return. Scientists can schedule dense measurements—far
more data than bandwidth can accommodate—and com-
mand the science-aware spacecraft to identify the most
relevant data to downlink.

2. Robotic Investigation

[5] Beginning in 2005 Carnegie Mellon’s ‘‘Science on
the Fly’’ project investigated science autonomy technolo-
gies for use in planetary science applications. It focused on
capabilities for science operations that involve long over-
the-horizon traverses, including autonomous detection and
classification of rocks, autonomous spectroscopy, science
goal representations and planning. A partnership with the
LITA field campaign provided a unique opportunity to test
autonomous science technologies as an integrated part of an
exploration robotics field campaign.
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[6] The LITA project aimed to survey the distribution of
extremophile life and habitats in the Atacama, a Mars-
analog desert in Chile. The three Atacama field campaigns
visited six field sites (Figure 1): sites A, B and D were
located in the ‘‘humid zone’’ near the Coastal Range; sites
C and F were in the arid core of the desert; site E was deeper
into the central depression. Scientists explored the desert
remotely using an autonomous rover commanded from
North America. Remote operations enforced space-relevant
constraints such as limited bandwidth and a single daily
command cycle. This permitted research into extremophile
habitats while simultaneously testing operational strategies
to exploit navigational autonomy in fast rovers. For a more
complete overview, refer to Cabrol et al. [2007].
[7] The robotic exploration utilized Zoë, a solar-powered

rover capable of single-command autonomous navigation of
multiple kilometers (Figure 2). Its instrument suite included

a mast-mounted pan-tilt unit with narrow-field panoramic
cameras (pancams) and fixed forward-facing navigation
cameras (navcams). It also carried an integrated microscopic
imager capable of detecting chlorophyll or bacterial colo-
nies. An onboard sprayer deposited fluorescent dyes which
would bond to living organisms after a short incubation
period (Figure 3). The microscopic imaging apparatus
would induce fluorescence with a flashlamp. Subtracting
ambient light left only the fluorescence from bonded dyes,
an in situ image of any bacterial colonies that were present.
Finally, the science team used orbital imagery from ASTER
[Abrams, 2000], Hyperion [Pearlman et al., 2001], and
IKONOS [Dial et al., 2003] as an integral part of planning
over-the-horizon traverses. Details about science instrument
payload are given by Cabrol et al. [2007] and Weinstein et
al. [2007].
[8] The Atacama campaign provided an appropriate test

bed for science autonomy technology. These technologies
were integrated into rover operations and evaluated as a part
of a broader rover exploration strategy.
[9] The science goals of the LITA project were particu-

larly amenable to science autonomy. The scientists attemp-
ted to complete a wide-area biogeologic survey in a short
time by visiting new environmental units whenever possi-
ble. The data collected during these traverses involved areas
that scientists had not seen previously. However, they
expected that extremophile habitats would be distributed
in isolated patches and oases of life as inferred from a
‘‘follow-the-water’’ strategy. Thus the data collected during
a long traverse contained a few positve images containing
life mixed with a large number of negative images. The
extensive measurements required to verify life at any single
location were expensive in terms of rover time and limited
amounts of experimental dye resources. It was hypothesized
that science autonomy could manage these resources more
efficiently by performing life-detection experiments selec-
tively in response to more expedient observations.
[10] Finally, the Atacama desert environment permitted

tests of site characterization. Like Mars, the Atacama is bare
of vegetation; site properties such as the distribution of
surface materials were plainly visible to rover cameras.
Moreover, the long traverses of the Atacama project meant
that Zoë often traveled across multiple geologic and envi-
ronmental units. These data sets provide a unique opportunity
to test automatic site profiling strategies in a Mars-analog
environment.
[11] We present experiments in four specific autonomous

science domains that illustrate a range of science autonomy
options available to rover designers. Section 3 demonstrates
autonomously responding to evidence of life with more
detailed measurements, specifically reacting to chlorophyll
fluorescence detected using a microscopic imager. Section 4
considers rock detection for site profiling and selective data
return, using the visible properties of rocks as a support to
geological and morphological characterization of the sites.
Later sections deal with science phenomena on larger scales
(Figure 4). Section 5 details tactical replanning to map the
distribution of life. Here an active mapping system actually
moves the rover to new locations in response to collected
data. Finally section 6 investigates detection of novel
images and geologic unit boundaries in image sequences

Figure 1. Map showing the location of LITA field
campaign sites [from Cabrol et al., 2007].
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Figure 2. The Zoë rover platform in the Atacama desert.

Figure 3. The microscopic fluorescence imager deployed and spraying underneath the robot.
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to support selective data return. In each domain area
quantitative comparisons demonstrate that science-aware
decision making leads to improvements in the quality of
returned rover data.

3. Autonomously Responding to Evidence of Life

[12] The LITA campaign strategy for unambiguously
detecting life was to search for spatially correlated fluores-
cence signals from several distinct types of biomolecules
using the robot’s onboard microscopic fluorescence imager
(FI). The full protocol of FI measurements at a locale was
resource-intensive, taking approximately 23 minutes and
using fluorescent dye from a limited onboard stock.
[13] However, since the emphasis was on finding locales

with positive signal from as many distinct biomolecules as
possible, we were able to improve overall efficiency by
terminating the protocol early if initial signals came back
negative. In this way we saved rover resources without
sacrificing high-value unambiguous detections of life.
[14] We divided the full protocol into two segments:

(1) Check quickly for chlorophyll; (2) Only if chlorophyll
was detected through onboard image analysis, autonomously
respond by performing followup measurements with dyes to
detect other biomarkers. In the common case that the result
from step (1) was negative, the modified protocol took only
eight minutes to complete and did not consume any dye.
Our field evaluation confirmed that the improved protocol
significantly improved overall efficiency.

3.1. Fluorescence Imager (FI) Instrument

[15] The FI is a down-pointing camera mounted on the
bottom of the Zoë rover (Figure 3). It has 10 cm field of
view and transverse resolution 210 mm. During autonomous
response experiments, the sampling location under the FI
was chosen by stopping the rover at fixed distances along its

traverse, and the camera was deployed and auto-focused
using z-axis motion.
[16] The FI could detect either the reflectance or fluores-

cence of a sample in various channels. A xenon flashlamp
provided illumination. Servos could select one of six optical
interference filters for the excitation path between the
flashlamp and sample, and one of ten filters for the detection
path between the sample and CCD.
[17] The FI captured reflectance under a combination of

sunlight and flashlamp illumination with no excitation filter.
In RGB color mode, separate images with red, green, and
blue emission filters combined to create a visual color
image. In fluorescence mode the FI captured a greyscale
intensity image with excitation and emission channel pair
selected to respond to the fluorescence of the molecule
under study (either chlorophyll or an artificial marker dye
which fluoresced when bound with a biomolecule). Differ-
ent marker dyes responded to DNA, proteins, lipids, and
carbohydrates. An automatic sprayer could spray the sample
with water to enhance chlorophyll fluorescence under dry
conditions. It could also spray a solution that contained all
four marker dyes along with acid and detergent to aid dye
penetration. For more details on the FI and its effectiveness
in the field, see Weinstein et al. [2007] and Warren-Rhodes
et al. [2007].

3.2. Chlorophyll Detection Experimental Procedure

[18] The FI protocol for each sample had two phases:
(1) The FI sprayed water and captured several images,
including a chlorophyll image used to determine if followup
was warranted. (2) It sprayed the dye mixture and captured
several images, including dye fluorescence images. Execution
times for the phases were approximately 8 and 15 minutes,
respectively.
[19] Scientists could command two types of sample

(Figure 5). A full sample always included both phases of
the protocol. A periodic sample always included phase 1,

Figure 4. Science autonomy experiments in the LITA project dealt with instruments and features at
multiple scales.
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but continued to phase 2 only if chlorophyll was autono-
mously detected (Figure 6).
[20] Scientists used the autonomous followup capability

during 180 m periodic sampling transects (Figure 5). At
each endpoint of the transect, the rover stopped and took a
full sample. At 30 m intervals within the transect, the rover
stopped and took a periodic sample. The rover executed
each traverse autonomously within a single command cycle
(including both driving and FI samples).
[21] In keeping with the LITA high-mobility exploration

strategy, the science team decided to add a followup quota
ensuring that the rover would not dwell too long on a
particular transect. At most three periodic samples per
transect could trigger followups. After filling this quota
the rover would not spray dye on subsequent samples even
if it detected chlorophyll.

3.3. Chlorophyll Detection Image Analysis

[22] Autonomous chlorophyll detection, used only for
periodic samples, relied on a single image of chlorophyll
fluorescence intensity (excitation 450 nm, emission 740 nm)
captured after the FI sprayed water on the sample. This was
called the ‘‘trigger image’’ (Figure 7).
[23] The detection algorithm reported the probability that

chlorophyll was present anywhere in the image, triggering
an autonomous dye followup if the probability was 50% or
higher. The algorithm reported a high probability if there
were any bright patches in the image. First it formed a
subsampled image by splitting the original image into 4 �
4 cells and calculating the mean intensity A(x, y) over each
cell. This smoothing eliminated false detections from sin-
gle-pixel shot noise. Second, it converted mean intensity for
each cell to a probability L(x, y) that the cell contained
chlorophyll using a sigmoid or ‘‘fuzzy threshold’’ function
sab. Finally, it calculated the overall probability L of
chlorophyll being present in any cell of the image by
combining the probabilities from individual cells using the
heuristic assumption that the L(x, y) measurements were
uncorrelated.

[24] Let I(x, y) denote the pixel intensity at position (x, y)
in the original image. We have

A x; yð Þ ¼ 1

16

X3

Dx¼0

X3

Dy¼0

I 4xþDx; 4yþDyð Þ ð1Þ

L x; yð Þ ¼ sab A x; yð Þð Þ ¼ 1þ exp aþ bA x; yð Þð Þð Þ�1 ð2Þ

L ¼ 1�
Y

x;y

1� L x; yð Þð Þ: ð3Þ

[25] The fuzzy threshold function sab used to convert cell
intensity to probability of containing chlorophyll had two
parameters a and b whose values were tuned using training
data. The training data were gathered by manually labeling
the presence or absence of chlorophyll signal in individual
4 � 4 cells of two trigger images containing lichens, based
on morphological cues from both the trigger image and an
associated visual color image.
[26] Let n = 2 denote the number of training images, let

Ai(x, y) denote the mean intensity in cell (x,y) of the
subsampled version of the ith labeled image, and let
Li*(x, y) denote the corresponding manual label, with value
1 or 0 indicating the presence or absence of chlorophyll in
the cell. The parameters a and b were set to maximize the
likelihood of the manual labels using logistic regression.

a;bð Þ ¼ arg max
a0;b0ð Þ2R2

Yn

i¼1

Y

x;y

1� jL*i x; yð Þ � sa0b0 Ai x; yð Þð Þj
� �

ð4Þ

[27] While every labeled training image contained signif-
icant instances of chlorophyll fluorescence, many images
from the Atacama Desert did not. To account for this
discrepancy we included an additional parameter t that
represented a prior on the probability of finding chlorophyll
in the image (equivalently, the proportion of the ground
surface expected to be covered by photosynthetic organ-
isms). This transformation, applied after training is com-
plete, yields

L x; yð Þ ¼ tsab A x; yð Þð Þ
tsab A x; yð Þð Þ þ 1� sab A x; yð Þð Þ

� � ð5Þ

[28] The value of L was then calculated from L(x, y) using
equation (3) as before. We informally hand-tuned t on a set
of test images so that most images would fall on the correct
side of the followup threshold (negative images below 50%,

Figure 5. Periodic sampling traverse.

Figure 6. Sample protocol flowchart.
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positive images above 50%). The resulting value of 0.005
was used for all of the reported results.

3.4. Chlorophyll Detection Experimental Results

[29] The autonomous response system was evaluated
onboard the rover during the 2005 Atacama field campaign.
Our data set included 24 periodic samples collected during
five traverses. Since the standard traverse length was 180 m,
and periodic samples occurred at 30 m intervals, nominally
each traverse should have included five periodic samples. In
practice, the number of samples varied slightly because of
small positioning errors in the commanded endpoint loca-
tions from the science planning interface. Nightfall ended
the last traverse after only two periodic samples. In two of
the traverses the rover filled the followup quota before the
last periodic sample; we excluded later periodic samples
from the analysis because the quota prevented any further
followups.
[30] Each sample image set was analyzed by a remote

team that included field biologists and fluorescence experts.
Using both the visual color image and the trigger image,
they labeled the samples as positive (contains significant
evidence of life) or negative (does not). We compared the
scientist labels to the autonomous followup response.
[31] The autonomous system and expert labels agreed for

19 of the 24 samples. 8 of the 24 samples were positive; 7 of
the 11 samples chosen for autonomous followup were
positive. Thus the yield, or proportion of dye samples that
occurred after positive evidence of chlorophyll, was 90%
higher when applying the science-aware system than would

have been expected for randomly selected samples (signif-
icance level < 0.01 using one-tailed Fisher’s exact test). In
other words, relative to a baseline strategy of always
applying dye the science-aware system skipped 13 dye
samples, saving more than three hours of robot time, while
following up chlorophyll detection correctly in 7 out of
8 cases.
[32] Failure modes we observed over the course of the

field campaign included corrupted chlorophyll signal when
the FI was dazzled by direct sunlight (normally it is shaded
by the robot), and failure of the water spray to reach the
sample due to high winds. These failures could be addressed
by hardware modifications or by limiting FI operations to
certain times of day. The image analysis could also be made
more robust to corrupted images by diagnosing problems
like dazzling and poor focus based on the image, or by
adding more definitive cues such as squamous lichen
morphology to the analysis.

4. Rock Detection for Site Profiling and
Selective Data Return

[33] One can also apply adaptive collection and return
principles to macroscopic geologic and biologic features.
During the LITA project we conducted several experiments
concerning the identification of rocks in Atacama Desert
imagery. Rocks are particularly valuable targets that contain
useful geologic and potentially biologic information (e.g.,
endoliths, chasmoliths) across a wide range of sensing
modes. They are important candidates for autonomous

Figure 7. (top left) Portion of FI visual color image containing a lichen. (top right) Chlorophyll trigger
image. (bottom left) An intermediate step of image processing; the brightness in each cell represents the
estimated probability that it contains chlorophyll. (bottom right) After autonomous followup, the FI
detected fluorescence from the DNA marker dye.
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instrument deployment and selective data return. This
makes them a natural test case for geologic and biologic
feature detection. LITA’s need for fast, robust rock detection
in a broad range of environments led us to develop a new
detection algorithm.
[34] Testing our system with Atacama data, we found that

rocks over 20 pixels in size could be found with up to 70%
precision at 60% recall. We also demonstrated the use of
rock detection for computing numerical site signatures in
order to compare neighboring locales. In a 200 m test
traverse, automatic rock detection and classification yielded
site signatures that correlated well with different distribu-
tions of surface material observed at the site. Finally, we
investigated the use of detected rocks in guiding selective
data return decisions. A blind survey of LITA project
scientists evaluated their preferences for images selected
automatically against a blind sampling strategy. This survey
indicated a significant preference for intelligent data return
utilizing rock detection.
[35] Several past systems have used stereo images to find

rocks based on their height above the ground plane [Gor et
al., 2000; Fox et al., 2002; Pedersen, 2002]. These methods
can reliably find large rocks on flat ground, but they cannot
usually identify small or partially buried rocks and their
range is limited to around 10 m. A second method reduces
rock detection to the simpler problem of finding shadows
[Gulick et al., 2001]. This strategy finds a point on the

rock’s surface but does not find the outline of the rock,
which can make subsequent classification more difficult.
Several other methods detect rocks based on their contrast
with the background in terms of albedo, color, or texture.
For example, Castaño et al. [2004] look for closed shapes
with an edge detector. This technique works best for finding
a small number of rocks with high accuracy. Our new
algorithm borrowed from these previous systems and used
any available intensity, shading and height information to
help inform detection decisions.

4.1. Detection Algorithm

[36] Given the wide variety of rocks, background soil,
and lighting conditions in the Atacama, we wanted a rock
detection system that could incorporate multiple types of
visual cues. This led us to develop a new rock detection
algorithm consisting of two steps: ‘‘feature segmentation’’
which segmented images into subregions of constant prop-
erties, and a ‘‘detection’’ stage which used any available
sensor data to identify rock regions from among the
candidates.
[37] The segmentation step processed sensor data to

identify homogeneous regions in the rover’s environment
corresponding to possible rocks. The segmentation stage
was not responsible for detecting targets but merely sug-
gested candidate regions for further classification. This
separation between segmentation and detection permitted
the rock detection system to be quite permissive in the types
of data it accepted as input. Any additional criteria, even
from multiple measurement sources, could add candidate
regions for consideration.
[38] The segmentation procedure employs a simple

region-merging strategy. It shatters the image into a grid
of 5 � 5-pixel squares and iteratively joins them back into
regions of uniform properties. At each iteration we calculate
the mean pixel values of all regions; contiguous regions
whose means fall within a certain threshold of each other are
merged. This process repeats until no more merges occur.
This entire procedure operates separately on hue, saturation,
and intensity color channels separately to yield multiple
independent segmentations of the same scene (Figure 8). A
feature which was indistinguishable from the background in
one channel was sometimes visible in another; a rock whose
contour appears in at least one segmentation still had a
chance to be recognized later in the detection stage.
[39] For some tests stereo imaging provided additional

geometric data in the form of a 3D point cloud. In these
cases we converted the 3D data into a height map which
constituted an additional fourth channel for the segmenta-
tion procedure. We computed the height map by fitting a
squared-error-optimal plane to the point cloud and then
calculating the physical distance from each pixel to the
groundplane. Applying the region-merging algorithm to the
height map produced additional candidate rocks of uniform
height. Our simple planar terrain model worked best for
large rocks and flat ground; any undulations in the terrain
would dominate the height segmentation and nullify the
benefits of stereo imagery.
[40] The detection stage identified science targets from

among the segmented regions by extracting a real-valued
attribute vector from each candidate and labeling it with a
Bayesian belief network [Pearl, 1988]. The belief network

Figure 8. Procedure for rock detection.
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is just one of a wide variety of supervised learning techni-
ques that one can train with exemplars to label new data
points. For our application belief networks offered some
advantages over comparable techniques. First, they solved
the problem of missing data—for instance, in the case of a
stereo mismatch, the network provided posterior probabil-
ities that were appropriate for the available information.
Another advantage to the Bayesian approach is its transpar-
ency; unlike many other supervised labeling methods it is
easy to diagnose and explain the reasons for each decision.
[41] During the detection stage the belief network was

labeled using a vector of numerical attributes:
[42] 1. Perimeter: The ratio of the region’s squared

perimeter to its pixel area. Nonrock artifacts often had
long spidery shapes while rocks were more convex and
ellipsoidal.
[43] 2. Relative color: The absolute value of the differ-

ence in mean pixel hue, saturation, and intensity between
the interior of the region and its local context as defined by
an enclosing rectangle.
[44] 3. Relative color variance: The absolute value of the

difference between the pixel variance of the interior region
and the pixel variance of its local context.
[45] 4. Height above the ground plane: While small rocks

are generally below the noise threshold for our stereo
system, height is a valuable attribute for detecting large
rocks and excluding large nonrock regions.
[46] 5. Texture: We use a fractal dimension measure

[Chaudhuri and Sarkar, 1995] of a binary intensity map
to describe the detail of each region as resolution is
increased. The result is an efficiently computed value that
corresponds somewhat to our intuitive notion of surface
roughness. It is worth noting that Dunlop [2006] has
recently shown texton analysis to outperform fractal dimen-
sion for this task.
[47] 6. Intensity gradient: Rocks are three-dimensional

protrusions that exhibit shading when illuminated by sun-
light. We used least-squares regression to find the magni-
tude of the intensity gradient over the pixel surface of each
region in the image, giving the overall strength of its
shading.
[48] Two additional attributes do not directly affect a

region’s chances of being a science target or its geological
classification. Nevertheless, we included them due to their
strong conditional dependence relationships with the other
attributes. By considering these dependencies the Bayes
network computed a more accurate posterior probability:
[49] 1. Absolute range: Many of the differences between

rocks and nonrocks become less apparent as range in-
creased. In particular, texture was more difficult to see even
when there were fewer pixels representing the distant
region.
[50] 2. Pixel area: There were varying degrees of condi-

tional dependence between most observed attributes and the
regions’ pixel area. These dependencies were due to the
way regions are represented as a finite number of pixel
‘‘samples.’’ For example, normalized perimeter was gener-
ally small for regions of small pixel area because rough
borders became less noticeable when the number of pixels
used to describe them decreased. Similarly, texture was hard
to recognize with few pixel samples.

[51] The belief network used any available values from
this attribute vector to calculate the probability of a region
belonging to each of five classes: rocks, uniform patches of
soil, sky, shadows cast on the ground, and a final ‘‘every-
thing else’’ class for regions that did not fit neatly into one
of the other categories. The ‘‘everything else’’ class
contained ambiguous candidates like a region comprising
a small part of a larger rock or one that included both a rock
and a small patch of sediment. We estimated belief network
parameters using examples of region classes based on
manually labeled segmentations of training images. Condi-
tional probabilities were calculated based on the empirical
probabilities exhibited in this training data. At runtime the
belief network attempted to replicate the class labeling for
novel data, resulting in a list of image regions
corresponding to likely rocks. For a more complete expla-
nation of the rock detection system, see Thompson et al.
[2005a].

4.2. Rock Detection Accuracy: Experimental
Procedure and Results

[52] We tested the rock detector’s performance on a pair
of panoramas taken from rover imagery in the Atacama
Desert. We chose a hill at site C strewn with rocks of
various sizes to serve as a test site. Data collection occurred
at two locales: a training set captured at the base of the hill
and a test set captured at its peak. At each site the rover used
its stereo imaging suite to capture partial panoramas com-
prising 180 degrees of azimuth and 40 degrees of elevation.
We manually labeled segmentation outputs from the first
panorama used them to train the region detection stage.
Then the fully trained detection algorithm identified rocks in
the second panorama.
[53] We evaluated these autonomous detections against

the locations of real rocks in the image set, restricting our
definition of a rock to those that had a short axis longer than
20 pixels. To calculate a performance score we checked that
the center of each detected bounding box lay within the true
contour of the rock as drawn by hand. If the center fell
within an unclaimed true rock contour the detection was a
true positive. This matching criterion does not consider the
degree to which the detected rock’s border contours match
the actual rock, which is a much harder problem. We scored
each image by matching true rocks in the scene against
available detections until no more matches were possible.
Any remaining true rocks were false negatives, and unas-
sociated detections were false positives.
[54] Figures 9 and 10 illustrate the detector’s performance

on the 1078 coded rocks in the test data. Varying the prior
probability for the ‘‘rock’’ class results in different perfor-
mance characteristics. Precision, the fraction of detected
targets in coded regions that correspond to actual rocks, is in
general inversely related to recall, the fraction of actual
targets that are found. Figure 9 illustrates detection precision
for varying choices of the class prior. The notches in the box
plot represent the 95% confidence interval for the median,
treating each subimage of the panorama mosaic as an
independent sample. As the prior probability increases a
greater number of uncertain regions are classed as science
targets and precision drops. Figure 10 shows the recall rate
for each prior probability. At a prior probability of 0.5, 60%
of all true rocks are found and 70% of all detected rocks
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(according to the correspondence metric outlined above) are
correct.
[55] Note that the detector never found all of the science

targets, even for the case where the prior was set to 1. The

reason is that our evaluation measures not simply the
accuracy of the region ‘‘rock’’ or ‘‘nonrock’’ labeling but
rather the overall system’s ability to find rocks in the
original images. A rock that does not appear in the seg-

Figure 9. Rock detection precision on the test panorama.

Figure 10. Rock detection recall on the test panorama.
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mentation stage has no chance of being labeled later. The
rock detection results of this test do not necessarily mean
that this rock detection system would achieve the same
results on any terrain. The training set was taken from
images captured at the same general area as the test set.
Thus the experiment does not prove the detector would
perform as well on very different rocks or terrain. However,
scientists would always be able to retrain a detector using
appropriate training data from any new region the rover
entered.
[56] LITA’s long-distance driving strategy provided a stiff

challenge for the rock detection system, requiring it to
accurately detect rocks in natural environments and under
field lighting conditions. These experimental results dem-
onstrate the effectiveness of a principled machine learning
approach that can flexibly integrate information from a
variety of visual cues and multiple sensors. Moreover, given
that the Atacama is a Mars-analog environment and the
detector can be quickly adapted to new data sources using
training examples, there is reason to believe the same
techniques will apply to Mars rover imagery.

4.3. Relating Detected Features to Scientist Priorities

[57] In the most arid regions of the Atacama extremophile
life is sparse and limited to benign microhabitats such as
crevices within or beneath translucent rocks [Friedmann
and Galun, 1974; Warren-Rhodes et al., 2006]. In order for
the rover to realize that a potential microhabitat is worthy of
further study we need some way for the science team to
express their priorities in terms of features the rover can
understand. Our approach to this problem relies on concepts
from previous work.
[58] Chien et al. [2005] describes a simple preference

model that does not distinguish the relative priorities of
different feature classes. This strategy was used for the
Autonomous Sciencecraft Experiment conducted aboard the
Earth Observing One orbiter. Transient phenomena such as
floods, fires, and volcanic activity were captured using
autonomous retargeting of a high-resolution imager, where
manual retargeting would have been too slow.
[59] Castaño et al. [2003] proposed three more expres-

sive models for science value. Scientists using the target
signatures strategy assign priority scores to particular clas-
ses of features. If the rover downlink budget is oversub-
scribed, the rover can use the scores to return the most
informative subset of the collected data. This approach has
the disadvantage that scientists can only prioritize classes of
features that they can anticipate in advance. Using the
representative sampling strategy, the rover builds a statisti-
cal model for observed features on the fly. It groups the data
into clusters with the object of returning a data set contain-
ing examples from each significant group of observed
features. Using the novelty detection strategy, the rover
prioritizes features that do not fall into any known class,
presuming that these features are interesting precisely be-
cause they are unusual.
[60] Smith et al. [2005] proposed an integrated approach

encompassing all three of these strategies. It worked by
supplementing prespecified target signatures with new tar-
get signatures for unanticipated classes. The new target
signatures carried priorities based on scientist interest in
representative sampling and novelty detection.

[61] We also note that the artificial intelligence commu-
nity has devoted considerable study to the general problem
of eliciting and representing complex preferences from
human decision-makers; see Chen and Pu [2004] for a
review. Their techniques deserve more attention from the
science autonomy community.

4.4. Geologic Classification

[62] The study of rocks was central to the LITA project’s
objectives. Rocks’ size and shape indicate geological pro-
cesses and environmental transitions. Rocks themselves can
be hosts to life. However, rocks are numerous and the
science team had only limited operation time. As a result
there was a clear need for some tasks to be made autono-
mous. In order to assist the science team in the character-
ization of the geological environments as potential habitats
to life, we developed an automatic rock classification
system for LITA that could categorize rocks using visual
attributes. After finding rocks in all the images of a traverse
the system used the numerical attribute vector described in
section 4.1 to sort detected rocks into geologic classes. To
offer scientists more flexibility we permitted categories
according to both supervised and unsupervised definitions
as in Smith et al. [2005].
[63] Our study built on the growing body of research

demonstrating automatic classification of rocks. Given rock
outlines, one can automatically calculate shape measures
like circular variance and Diepenbrök roundness. Dunlop
[2006] suggests that these measures correlate well with
Crofts’ roundness and sphericity measurements, which in
turn are useful indicators of how rocks were created and
transported. Spectral properties also offer mineralogical
information for geologic classification. The Robotic Ant-
arctic Meteorite Search of Pedersen et al. [2001] integrated
spectroscopy and visual imagery to find and classify mete-
orites during robotic traverse on the Elephant Moraine
plateau. Pedersen [2001] demonstrates statistical models
of the local environment that use contextual cues to improve
classification performance by the explorer robot. More
recently, Bornstein and Castaño [2005] have demonstrated
automatic classification of carbonate minerals using spectral
characteristics.
[64] Our classification system permitted several methods

of defining geologic classes:
[65] 1. Interval classes: These classes specified a binary

decision boundary along specific attribute values chosen by
the scientist. For example, quartz rocks host microbial
communities due to their translucence and can sometimes
be identified by their high albedo; a scientist could instruct
the system to label as quartz any rock which had an albedo
greater than two standard deviations above the mean. Only
rocks that did not fall into a user-defined interval became
candidates for one of the other classifications.
[66] 2. Example classes: We modeled this class with a

multivariate Gaussian distribution over the vector of rock
attributes. Scientists could specify an example-based class
by providing one or more examples. A maximum-likelihood
strategy [Bishop, 1995] then provided the best parameters of
the distribution describing these examples.
[67] 3. Automatic classes: These classifications were

similar to example classes in that they are defined by a
multivariate Gaussian. However, these clusters were gener-
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ated automatically in response to new data. An expectation-
maximization (EM) algorithm [Dempster et al., 1977] fit
automatic cluster parameters to the entire data set while
leaving example class parameters fixed. In this manner the
automatic classes shifted to accommodate data that was
inadequately described by other classes.
[68] 4. Outliers: We modeled novel rocks with a uniform

probability density function that collected examples not
belonging to one of the other classes. By altering this
density scientists could be more or less permissive about
what counted as an outlier.
[69] These options provided an expressive vocabulary of

possibilities for defining geologic classes. Nevertheless,
the simplicity of the visual properties available (color,
texture, etc.) meant that these classes could probably never
correspond perfectly to formal geologic or mineralogic
classifications. We hypothesized that even without perfect
geologic fidelity, a loose correlation of automatic classi-
fications with the real categories of interest would improve
data collection over random or periodic measurement
techniques.

4.5. Selective Data Return: Experimental Procedure
and Results

[70] For LITA—as in any future rover mission dealing
with large quantities of collected data—data return prioriti-
zation was a critical issue. We conducted a blind survey of
8 LITA project scientists to evaluate their preferences for or
against image sets selected using intelligent sampling tech-
niques. We processed several data sets using both a selective
return strategy and periodic measurement strategies that
ignored image content. The selective return strategy
detected rocks in all images and classified the detected
rocks. It then returned the best images as identified by a
selective return algorithm.
[71] We chose several site C data sets for their prepon-

derance of rocks and diversity of terrain. The scientists
evaluating the data sets for this experiment were kept blind:
this was their first view of the locale in question, although
they had previously viewed imagery from nearby areas with
similar geology. The data sets were chosen to simulate real
data return tasks that might occur in field work:
[72] 1. Four 270-degree panoramas that excluded the rear

quadrant. These panoramas each contained 85 images. The
scientists were given a reduced-resolution thumbnail of the
entire panorama; the data return task consisted of finding
the best three high-resolution images to transmit. The
baseline periodic method returned the forward, right, and
left-looking images at a 30-degree declination. This strategy
appeared to provide the best compromise between detail and
context.
[73] 2. Six long traverse segments of 100 pancam images

each, sampled at 2m intervals. These six segments were

taken from two long drive actions near site C. The pancam
faced forward at a 15-degree declination for all images. No
thumbnails were provided. The task consisted of returning
the best image frames from the sequence. The baseline
strategy selected the first, last, and middle frames from each
traverse.
[74] 3. Ten short traverse segments of 30 pancam images

each, sampled at 2 m intervals. Again, no thumbnail images
were provided. These segments came from a single long
drive action with similar pancam imaging parameters. The
baseline strategy selected the first, last, and middle frames
from each segment.
[75] The LITA intelligent return system used a combina-

tion of both representative sampling and novelty detection.
For each data set it first computed 10 automatic classes
using standard clustering techniques. It then assigned a
score of 5 to each image containing at least one outlier
rock and a score of 1 for each automatic class represented in
an image. Thus with 10 automatic classes the maximum
possible score for a single image was 15. However, a
‘‘neighbor threshold’’ distance of 5 m prevented any two
nearby images from getting scores for examples of the same
class. In theory, this would prevent any single feature from
monopolizing the downlink. In addition, a ‘‘quantity thresh-
old’’ indicated the maximum percentage of the downlink
that could receive a score for any particular class. This
threshold was set to 0.25 for the outlier class and 0.1 for
each automatic class. The quantity threshold also helped to
encourage a diversity of different images. These thresholds
and the parameters of the EM algorithm were tuned man-
ually to achieve reasonable results on a similar set of data to
the test set described above. A greedy data return algorithm
chose the three downlink images one at a time, each time
adding the top-scoring image, in order to maximize the
overall value of the data set.
[76] For each of the 20 data sets the scientist was given

two triplets of downlinked images in random order. One
triplet had been chosen through periodic data return, while
the other was chosen through automatic selective return.
Occasionally both methods chose the same image by
coincidence; in these cases the repeated image appeared in
both triplets. The scientist was asked to choose the down-
link triplet that ‘‘they would rather receive to help them
understand the traverse area.’’ Scientists responded by
expressing a preference for the first triplet, the second
triplet, or neither.
[77] The complete survey consisted of 160 trials. Table 1

summarizes the number of times any preference was
expressed for either return method. The total number of
observed preferences was 134, out of which 90 favored
intelligent sampling and 44 favored periodic sampling
(significance level < 0.001, c2 = 15.79, against the hypoth-
esis that scientists would choose either method with equal
likelihood).
[78] While scientists showed a significant overall prefer-

ence for selective data return they usually provided reasons
for their choice that had little to do with the classes of rocks
in the scene. These reasons varied broadly depending on the
scientist’s own background and the perceived task at hand.
Occasionally a scientist would prefer a high-angle panorama
tile because it provided more context for planning naviga-
tion. Other times scientists focused on interesting patches of

Table 1. Number of Times a Preference Was Expressed for Either

Sampling Strategy

Data Return Method Panoramas Short Sequences Long Sequences

Periodic 9 23 12
Selective 15 49 26
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soil or a curious shadow that indicated a larger object
outside the image frame.
[79] Scientists’ overall preference for selective return is

interesting given the relative unimportance of rock classi-
fications in their stated rationales (which of course will vary
according to the perspective of each mission). It is likely
that the rocks chosen for selective return were correlates of
these other interesting phenomena. The selective return
algorithm favored images with lots of rocks. Moreover,
the representative sampling component favored a broader
diversity of image content. These factors filtered out homo-
geneous stretches of empty terrain that often dominated the
periodic data sets. In the case of panoramas, the selective
return strategy may have inadvertently gained an advantage
with the potential to return both near-field and far-field
imagery. This often led to a greater diversity of elevations in
the downlink. In many cases the scientist’s decision criteria
was not addressed explicitly by either selection method.
Nevertheless, the overall preference in favor of intelligent
return suggests that rock detection and classification im-
proved the quality of the intelligently selected data sets.

4.6. Rock Detection and Classification for Autonomous
Site Profiling

[80] A natural extension of autonomous rock detection
and classification was the generation of automatic geologic
signatures—profiles describing the distribution of rock
classes at a site [Thompson et al., 2005b]. These geologic
signatures reveal subtle geologic trends, the borders be-
tween geologic units, and sudden changes compared to
neighboring locales. All of these onboard analyses can
inform adaptive measurement or return decisions. An ex-
periment analyzed a traverse consisting of five neighboring
locales at LITA site C. It suggested that site profiles based
on autonomous rock detection correlated with the principal
distinctions in surface composition identified by a human at
the site.

[81] The site profiling procedure consisted of several
stages (Figure 11). The technique first detected rocks in
all images and then classified them according to automatic
or user-defined classes. The result was the quantity of each
different class at a locale. Subtle changes like a shift in the
density of a certain class identify unit borders and suggest
areas for further exploration. For visualization we applied
principal component analysis (PCA) to the class distribution
histograms and projected them onto their first two principal
components. This provided a compact 2D visual compari-
son of the different locales.
[82] We tested this strategy during an autonomous tra-

verse to the top of a rock-strewn hill at cite C. The rover
began a distance from the base and traveled forward in 50 m
intervals, collecting panoramas and workspace imagery at
each locale. The traverse visited five locales. The first three
were situated on the approach to the base of the hill and the
fourth was located half-way to the top.
[83] To an untrained human observer at the site the first

three locales all appeared alike, with occasional patches of
white sediment and few significant rocks. The hillside
terrain at the fourth locale was different, however—here
the sediment contained some large dark rocks along with
many small light-toned rocks. The light-toned material was
no longer present at the fifth locale, but the peak of the hill
was covered with large grey rocks. Figure 12 shows some of
the collected data. Row A is an illustration corresponding to
the basic human interpretation with dots representing ma-
terial of different albedos. Row B shows sections of the 95-
image panoramas collected at each locale. Row C shows
underbody ‘‘workspace’’ imagery. Underbody images were
not analyzed but they do provide some intuition into terrain
conditions at each locale.
[84] We detected rocks in the five panoramas and ana-

lyzed them using a variety of different classification
schemes. The first classification method favored manually
chosen interval classes: an albedo feature interval to account
for the light-toned material, a second interval based on rock
size, and an outlier cluster to account for everything else.
These distribution histograms appear in row D. The clusters
show a general trend toward an increase in the number of
rocks as one approaches the peak together with a
corresponding drop in the proportion of light-toned materi-
al. Note that in both unsupervised and supervised cases, a
larger number of light-toned rocks appear in locales I-III
than the ground-truth records suggest. This is due to patches
of light-toned sediment (visible the first three panoramas of
row B) that can be mistaken for rocks.
[85] The second classification used a completely auto-

matic model. Five multivariate Gaussian clusters were
initialized to random data points. Then EM clustering
iteratively adjusted the clusters’ parameters to converge on
values that maximized their likelihood with respect to the
entire data set. The resulting distribution histograms appear
in Figure 12 row E. Three color-channels and size features
were used in clustering, but clusters divided mainly along
the intensity axis. Because of this the legend provides mean
intensity information to distinguish the clusters. This clas-
sification succeeded in detecting the general trend in num-
ber and types of rocks—fewer rocks in locales I-III, a
change in surface composition as the rover climbed the hill,
and a profusion of dark rocks at locale V.

Figure 11. Procedure for automatic site profiling.
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[86] The histograms in row E accurately reflect the
similarity of locales I to III and the relative differences of
locales IV and V. However, comparing these histograms
visually is difficult. Figure 13 provides a simpler visual
representation based on Principal Component Analysis
(PCA). It shows the normalized histograms projected onto
their first two principal components, yielding a 2D space
that best preserves the variance of the histogram data. The
figure compares three strategies for producing geologic
signatures. First, a baseline control procedure used a simple
histogram of pixel color values in the panorama as a proxy
for geologic content. These color features fared worst; the

relationship between color pixels from different locales had
little to do with the material present at the surface. This
inaccuracy was highlighted by the first three locales, which
were similar geologically but whose signatures were widely
separated in the PCA projection. The distribution of colors
was influenced by many factors—such as features on the
horizon or lighting changes—that had little to do with the
locale’s geology.
[87] Detecting rocks in images provided better geologic

signatures. The PCA plot of manual categories suggested a
linear gradient of change between locales I and V. The
ground truth geologic change is sudden, however, so this

Figure 12. Five locales during a 200 m traverse. (a) Human interpretation. (b) Portion of the color
panorama. (c) Underbody ‘‘workspace’’ imagery. (d) Manually fixed interval classes. (e) Classes from
unsupervised clustering.

Figure 13. PCA projection of class distribution histograms from Figure 12 helps to visualize differences
between locales. Rock detection with automatic (adaptive) classification offers the best overall fidelity; it
reflects the similarity of locales I-III and the unique surface compositions of locale IV and locale V.
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signature was still slightly misleading. The error could have
occurred due to the bias of an overly rigid model. Much of
the variation between locales occurred within the most
general class and was thus invisible to the classification.
Rock detection with unsupervised clustering gave the best
result, matching the human interpretation that locales I–III
were similar while locales IV and V were each different
from all others.

5. Tactical Replanning to Efficiently Map the
Distribution of Life

[88] One of the ultimate goals of rover exploration is to
build maps that relate to models of the environment. For
instance, in the Atacama, surface habitats for lichens and
bacteria can be created by terrain features that locally
modify air flow and insolation. The interaction of these
variables with the presence of life is poorly understood. We
propose a form of representative sampling called ‘‘sampling
by regions’’ to efficiently answer this type of question.
[89] Under the sampling by regions strategy, regions with

homogeneous properties are identified in orbital imagery.
The rover is used to characterize aspects of each region that
cannot be measured from orbit. In the Atacama, orbital data
can be used to study frequency of cloud cover, landforms
that control airflow, and average slope, which affects
insolation and wind exposure. One can identify local
regions that are homogeneous with respect to these proper-
ties, and then address the properties’ relationship to viable
habitats by using the rover to characterize the presence or
absence of life on a per-region basis.

5.1. Related Work in Planning and Execution

[90] There has been considerable research on planning
systems for planetary surface rovers [Estlin et al., 2002;
Urmson et al., 2003; Tompkins, 2005], achieving notable

success with the MAPGEN and GESTALT planners used by
the Mars Exploration Rovers [Bresina et al., 2005;Maimone
et al., 2006]. Our discussion will focus narrowly on con-
trollers that either use probabilistic planning or have the
ability to react to science observations collected on the fly.
[91] The Antarctic meteorite search [Pedersen, 2001]

(see also section 4.4) selected sensing actions greedily in
order to reduce the uncertainty in rock/meteorite classifi-
cation according to a Bayesian network model. Although
its action selection was myopic, this system was notable
for its principled use of a probabilistic model to handle
uncertainty.
[92] Estlin et al. [2003] developed a planner for inserting

trigger-response opportunistic science actions into a realistic
rover command sequence. Their CASPER planner is so-
phisticated enough to reason about such issues as detailed
path planning, instrument warm-up periods, and instanta-
neous power constraints that prevent rover subsystems from
operating simultaneously. It successfully inserted rock mea-
surement actions into a rover traverse as part of an integrat-
ed demonstration of the OASIS system in a controlled
outdoor environment. The Autonomous Sciencecraft Exper-
iment discussed in section 4.3 also used CASPER technol-
ogy to insert opportunistic science actions [Chien et al.,
2003].
[93] Dearden et al. [2003] generated contingent plans that

were robust with respect to uncertainty about the resources
that actions would consume. One could use the same
contingent plan representation to build in slack for oppor-
tunistic science.
[94] Smith [2004] developed a system for optimally

dropping and reordering actions when rover resources are
oversubscribed. Pedersen et al. [2006] described an inte-
grated demonstration using Smith’s oversubscription plan-
ner to insert new science tasks on the fly as they were
requested by the human members of a human-robot team.

Figure 14. Representative sampling strategy at multiple scales.
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[95] The LITA operational strategy of large-area surveys
inspired a new onboard planning system. We aim to account
for both scientists’ plan constraints and enhance mapping
efficiency by making use of rover observations on the fly.

5.2. Mapping Scenario

[96] To operationalize sampling by regions, one can
describe the environment using the different size scales
shown in Figure 14. At large scale (kilometers, upper
map), scientists designate a path based on long-term mis-
sion goals. At small scale (hundreds of meters, lower map),
the rover’s path should be optimized to travel through
regions relevant to the modeling objectives. In the figure,
region boundaries are indicated with solid lines and the
rover’s path is marked with a dashed line.
[97] Within the rover’s field of view (tens of meters) in

the small scale map, the rover should scan the environment
and react appropriately if it detects cues associated with life,
such as visible plants or signs of gully erosion. This reaction
might include taking a detour toward the feature and
gathering additional data to confirm the presence of life.
In the figure, detected features are marked with black
circles; note that the rover has adjusted its path to visit them.
[98] We have developed an onboard system that intelli-

gently controls rover motion and sensing at small scale,
while respecting the constraints of the large scale plan
specified by scientists. The first step is off-board probabi-
listic planning based on large-scale goals and a region map
provided by scientists. This generates a robust policy that
specifies how to react to different potential science instru-
ment readings during execution. During traverse the rover
refers to this policy to choose appropriate actions based on
the actual instrument readings. In effect, it continuously
replans the remainder of the traverse based on what it sees.
[99] The tactical replanning system attempts to follow the

most efficient exploration strategy. In order to define
optimality, where there are multiple interacting goals, each
goal must be assigned a relative priority that allows the
system to perform appropriate trade-offs. Our scenario
encodes these priorities by specifying a per-region reward
for finding evidence of life and penalties for taking time-
consuming actions.

[100] In addition, one must specify how to deal with
uncertainty. If a plan includes searching a region for life,
and it is unknown whether the region contains life, one
cannot evaluate in advance how successful the plan will be.
We take a decision-theoretic perspective toward uncertainty.
Uncertain aspects of the environment model and uncertain
outcomes of rover actions are modeled probabilistically, and
the optimal plan is the one that has the highest expected or
‘‘average’’ value.

5.3. Tactical Replanning Experimental Procedure

[101] We evaluated our tactical replanning system on-
board the Zoë rover in a controlled outdoor test site in
Pittsburgh (Figure 15, right). This allowed us to simplify
several aspects of the problem. First, since there were no
appropriately distributed natural features in our test area, we
used simple artificial targets (10 cm squares of white
posterboard) as a stand-in for evidence of life.
[102] Second, rather than generating a region map based

on satellite images of the test area, we generated an arbitrary
region map by hand and then modified the test area to match
the map. To be more precise, since the region map only
specifies the likelihood of life in each cell, we randomly
generated multiple target layouts for each region map, using
the specified likelihoods.
[103] Figure 16 shows one region map and two corres-

ponding randomly drawn target layouts. Regions are indicated
as groups of cells with the same shading. Each region is
marked with the probability that cells in that region will
contain evidence of life. White squares in the target layouts
indicate the locations of artificial targets.
[104] In keeping with the overall scenario, the region map

represents a segment of a long traverse. The rover starts at
the left side of the map and must eventually exit from the
right side in order to conform to the large scale plan.
[105] Figure 15 (left) helps to explain the actions available

to the rover at each step of execution. In a single action, the
rover could either (1) scan all three of the marked cells,
returning a noisy signal as to whether they contain life, or
(2) perform a simple move or sampling move to any one of
the marked cells. Sampling moves differ from simple moves
in that they cause the rover to take additional detailed

Figure 15. (left) Actions available to the rover. (right) The Zoë rover at the test site in Pittsburgh.
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measurements as it enters the new cell. They are intended to
confirm the presence of life.
[106] The scan action returned one of three possible

observations for the likelihood of life in each forward cell,
interpreted roughly as ‘‘negative’’, ‘‘maybe’’, and ‘‘posi-
tive’’. In onboard testing, these corresponded to different
confidence levels from the detection routine searching for
artificial markers, which due to the small size of the markers
reported false positives about 20% of the time and false
negatives about 10%. The sensor noise parameters used in
the planning model were learned from a training set that
included detection routine outputs and ground truth labels
gathered over several runs in the testing environment.
[107] The planning objective was to maximize the ‘‘effi-

ciency score’’ for the task, which tallied rewards and costs.
The robot received a per-region reward: +5 points if the
robot entered the region, +20 points if it passed through a
life-containing cell in the region, or +50 points if it
performed a sampling move into a life-containing cell in
the region. Each action incurred a cost: �1 point for each
move, and �5 points for each scan or sampling move. Thus
the rover must find confirmed evidence of life in as many
regions as possible, while minimizing the number of
detours, scans, and sampling moves.
[108] We evaluated three planners on the life survey task.

Under the blind planner, the rover simply moved to the right
in a straight line, always using sampling moves. The blind
planner would confirm the presence of life only if it was
found on the straight-line path.
[109] Under the reactive planner, the rover followed a set

of simple hand-generated rules designed to efficiently
confirm the presence of life through combined use of
scanning and sampling. It moved forward through the
map, performing a scan action after each move, and
detoured to take a sampling move if life was detected in a
scan. When life was not detected, the reactive planner tried
to stay on a preplanned path that was optimized to pass by
areas likely to contain life.
[110] Under the probabilistic planner, actions were chosen

in order to explicitly maximize the efficiency score defined
earlier. The probabilistic planner was not limited to using a
preconceived exploration strategy. Instead, it attempted to
find the best strategy for any particular map.

[111] The probabilistic planner drew on a large body of
research in the artificial intelligence community; we mod-
eled the system as a partially observable Markov decision
process, and we found a near-optimal plan using heuristic
search and value iteration techniques [Smith and Simmons,
2005]. Given a prior map, the planner generated a complete
plan with contingent branches for different possible obser-
vations during 20 minutes of off-board planning on a 3.2
GHz Pentium-4 processor, and this plan was transmitted to
the rover for execution.
[112] The reactive and probabilistic planners were each

evaluated on 20 runs through the test course; there were 2
prior maps, times 2 randomly drawn target layouts per map,
times 5 runs per target layout. The blind planner could be
evaluated on the same target layouts in simulation since its
actions do not depend on uncertain sensor observations.
[113] Results are shown in Table 2. For each planner, we

report average values over the 20 runs. ‘‘Search actions’’
gives the number of scan and sampling move actions used
per run (smaller values are better). ‘‘Regions confirmed’’
gives the number of regions in which the presence of life
was confirmed with a sampling move action (higher values
are better). Finally, ‘‘efficiency score’’ is the combined
efficiency metric that the planners were trying to optimize
(higher values are better).
[114] The probabilistic planner performed best in terms of

search actions and overall efficiency. The reactive planner
confirmed the presence of life in more regions, but at the
cost of far more search time than the other planners, which
would leave less time for science on later legs of the
traverse.
[115] These results demonstrate that rover exploration

efficiency in a mapping task can be improved by reasoning
about observations obtained en route. Moreover, general-
purpose probabilistic planning techniques are computation-

Figure 16. Prior map 1 and corresponding randomly drawn target layouts 1A and 1B.

Table 2. Tactical Replanning Experimental Performance

Planner Search Actions Regions Confirmed Efficiency Score

Blind 12.0 2.5 68
Reactive 20.0 3.4 61
Probabilistic 7.5 3.0 113
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ally feasible in this domain, and were shown to outperform
a reactive planner relying on hand-tuned heuristic rules. In
future work, we would like to remove some of the simpli-
fying assumptions of our test scenario and study rover
mapping in a more realistic setting.

6. Detecting Novel Images and Geologic Unit
Boundaries in Image Sequences

[116] During the third year of the LITA campaign scien-
tists often commanded long sequences of navigation
images. A navigation sequence consisted of 320 � 240
pixel color images captured at two meter intervals from
cameras mounted on the rover mast. They provided a 60�
field of view of the terrain in front of the rover. Scientists
exploited these sequences to gathering dense survey imag-
ery and for gaining situational awareness of the rover
traverse area. We hypothesized that navigation images were
also amenable for autonomous analysis.
[117] The navigation sequences themselves often contained

long stretches of homogeneous terrain with just a few
outstanding or interesting transition frames. Onboard analy-
sis was a prime candidate for reducing these data sets by
identifying novel or interesting frames. Another unique
aspect of navigation sequences was their scale—they could
be as long as a multiple-kilometer traverse itself (Figure 4).
Therefore trends in navigation sequences could theoretically
assist with the identification of geologic boundaries. Their
large scale permitted the integration of orbital data with
surface information to further improve autonomousmapping.
[118] Context-sensitive models were used to analyze

navigation sequences. As in the life survey experiment
above, these models considered not only the feature itself
but also its location. They identified novel features by
highlighting anomalies that were unexpected in the context
of the local environment. These local dependencies between
neighboring sample points were used to localize geologic
boundaries. Tests on navigation imagery from the LITA
field season suggested that context-sensitive data analysis
using a hidden Markov model [Rabiner, 1989] provided

novelty detection performance superior to periodic selection
strategies.

6.1. Novelty Detection in Navigation Sequences

[119] We evaluated novelty detection with a sequence of
1888 navigation images from a single site F traverse (LITA
sol F20). We chose this sequence both for the long length of
the traverse and the diversity of its terrain. This drive action
began on a rocky hillside and transitioned to a basin covered
in finer material.

Figure 17. A navigation image with foreground grid
overlay. We extract numerical color and texture attributes
from each grid square.

Figure 18. Automatic labeling of a boundary in the
environment. Letters correspond to the image class, while
squares suggest novel locations for measurement.
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[120] The image frames in the navigation sequence had
too poor a resolution for our rock detection algorithm.
Instead we relied on simpler features as a proxy for geologic
content. We split the foreground half of each image into a
grid of 10-pixel cells; each cell constituted an independent
sample of the imaging site (Figure 17). The system com-
puted numerical attributes for the color and texture of each
cell; a single image provided several hundred distinct
samples in color-texture space. We color-normalized images
using the ‘‘greyworld’’ strategy [Buchsbaum, 1980] and
used cells’ fractal dimension [Chaudhuri and Sarkar,
1995] as a simple texture measure.
[121] The sequential structure of rover traverse imagery

made it amenable to description by a hidden Markov model
(HMM). The HMM used persistent ‘‘hidden states’’ to
estimate the unobserved biologic or geologic characteristics
of the rover’s environment. This permitted context-sensitive
novelty detection; the rover could account for the influence

of neighboring observations when evaluating an image’s
likelihood (Figure 18).
[122] A graphical representation of the HMM appears in

Figure 19. The model quantified relationships between
neighboring states (transition probabilities) and the likeli-
hood of each state generating a particular observed grid cell
(emission probabilities). Its chain structure reflected the
persistence of environmental conditions; the current state
influenced expectations for the next image’s content. Our
implementation described observation probabilities with a
tied continuous-density Gaussian mixture model [Belle-
garda and Nahamoo, 1990]. The Baum-Welsh algorithm
[Baum, 1972] assigned model parameters which could then
be used to estimate the hidden state of any image. We
estimated these parameters using the entire image sequence
but one could also build models from partial data for
adaptive sampling decisions during traverse.
[123] We evaluated the HMM system’s novelty detection

performance for prioritizing images for transmission to
Earth. Standard novelty detection strategies fit a statistical
model to the entire data set and select low-likelihood outliers
for downlink. We hypothesized that by representing the
spatial structure of the environment, the HMM could im-
prove performance by recognizing images that were unlikely
in the context of local observations. We performed a relative
performance evaluation with a set of rare image features that
were unambiguous to identify. We used plants (appearing in
132 images) rocks with a major axis longer than 30 pixels
(31 images), and the rover shadow (28 images).
[124] The novelty detection methods prioritized all se-

quence frames in order of decreasing novelty (increasing

Figure 19. The hidden Markov model used for novelty
detection.

Figure 20. Selective return using image analysis outperforms periodic and random return strategies for
novelty detection. The context-sensitive HMM performs best of all.
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likelihood). The number of novel targets chosen for various
data allowances indicated how closely different models’
likelihood estimates aligned with the rare image features.
This number produced a relative performance score. We
used random model initializations to generate 20 trials
simulating two different novelty detection strategies: a
two-state HMM with three mixture components, and a
single-state three-component mixture model. The one-state
model was not context-sensitive; it was equivalent to a
stationary Gaussian mixture model that ignored each
image’s sequence position and treated all data products as
independent.

[125] Figure 20 shows the results of the experiment with
boxes illustrating the middle data quartile and notches the
95% confidence interval. A random data return policy
provided a performance baseline. Both novelty detection
methods exhibited good selectivity for the chosen features.
The context-sensitive HMMs provided the best overall
performance for this data set. Figure 21 showed examples
of novel image frames favored by the HMM, with an
annotated square to indicate the most novel cell in each
frame. These novel cells are possible targets for selective
instrument placement.

6.2. Identification of Geologic Units

[126] Long image sequences gathered during the LITA
field campaign provided an opportunity to study automatic
detection of geologic unit borders. For our purposes ‘‘geo-
logic unit’’ refers simply to an area with a particular
composition of visible surface material. Autonomous detec-
tion of geologic units could be used to trigger additional
measurements at contact points or identify unexpected
geology to prioritize for downlink. The experiment here
used data collected during science operations at site F. Four
traverse sequences from this site had crossed boundaries
which project scientists had previously identified as prob-
able contact points between units.
[127] The hidden state of the HMM provided a natural

framework for mapping geologic state transitions during
long-distance autonomous drives. Given a sequence of
measurement sites, the Viterbi algorithm [Forney, 1973]
identified the most likely sequence of hidden states. Figure
18 shows an example segment of the day 20 traverse labeled
with two geologic states. On this particular boundary the
rover crossed from a rocky berm onto a flat road. The
Viterbi algorithm produces a state labeling most likely to
produce the observed sequence of color and texture features
in the images.

Figure 21. Novel frames identified from the traverse.
Squares indicate the single most novel grid cell.

Figure 22. The hidden Markov model augmented with orbital data.
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[128] These Viterbi labelings rely exclusively on infor-
mation collected by navigation cameras. To improve per-
formance further we augmented the HMM model so that it
tied together this surface data with orbital imagery and the
predictions of a project scientist. The result was the multi-
scale structure shown in Figure 22. We hypothesize a
discrete hidden state variable reflecting the geologic state
of the environment at each imaging location along the
traverse. This geologic state probabilistically generated
observed orbital data (in our case, the intensity value of
the associated pixel from an ASTER near-IR data product).
It also generated a geologist’s map labeling, and an image
type—a hidden variable describing the discrete class of
image observed locally by the rover.
[129] We grouped the entire set of observed image cells

into a lexicon of 20 basic types using K-means clustering.
Different clusters in the lexicon approximately represent the
different types of surface materials such as rocks, shadows,
sediments of varying texture, and salt deposits. In addition
to cell types, we included discrete ‘‘image types’’ that
generated cells according to a multinomial distribution.
Thus each image type referred to a specific proportion of
cell types. One image type might generate cells that are half
sandy and half rocky, while another might represent a
surface covered entirely with big smooth rocks and their
shadows. A single surface unit could in fact produce several
image types. For example, the rover would observe different
albedo/texture profiles from the sunlit and shaded sides of
the same scene.
[130] In addition to navigation imagery the algorithm

utilized ASTER orbital data. The ASTER imagery has a
resolution of 30 m/pixel, and provided a Near-IR albedo
value for each sampling location. We georectified ASTER
images of the traverse region, blurred them to compensate
for an average misregistration of about 50 m, and discre-
tized the resulting albedo measurements to yield a second
observed feature for each sample location. Finally, maps
drawn by remote geologists provided an additional feature
for each sampling site. These maps indicated hypothetical
unit regions that could result in a different distribution of
surface material. Adding them to the feature set suggested
appropriate clusterings to the HMM based on the scientists’
hypotheses. These labelings were merely hypothetical so we
represented them numerically to the HMM as a smoothed
distribution over possible labelings at each pixel.

[131] Four traverses from the test data set crossed loca-
tions that had been hypothesized to be geologic boundaries.
We used one of these traverses as a test set for tuning sensor
processing and model parameters, and applied the HMM
model to the remaining three traverses. We fit both cell and
image type models on-line using the EM algorithm, fixing
the number of image and cell types beforehand. We found
that performance was robust to changes in these parameters
so we left them at 5 and 10 respectively for the experiments
below. After fitting the complete HMM to observed data we
queried the model with the Viterbi algorithm [Forney,
1973]. This output the most probable hidden state parse
of the traverse. We compared the resulting borders against
ground-truth identification of the actual geologic border in
imagery.
[132] Looking more closely at traverse A (Figure 23), the

remote scientists hypothesized two geologic boundaries but
the image set only provided obvious evidence for the first.
In contrast, the 2-State parse unsurprisingly identifies this
real border as the only boundary in the data set. Interest-
ingly, the HMM also discovered a close approximation of
this boundary autonomously using the sequence of naviga-
tion images alone and without any priming from orbital or
human-labeled data. Forced to identify a third unit, it
defaulted to the map label’s suggestion.
[133] Traverse B (Figure 24) proved more difficult. While

there was a perceptible change in material near image 414,
all surface units in this traverse were highly heterogeneous.
The second ground truth unit was in fact a mix of large
rock-strewn and open areas. Moreover, the traverse was
performed late in the day with rapidly changing light
conditions. This further complicated the automated compar-
isons across images. The completely unsupervised model
(using navigation imagery alone) failed to capture the
intended structure. Including orbital data in the model
improved the match to our ground truth parse, but the rover
still falsely identified an unexpected new unit starting at
image 1797. This was probably due to low light conditions
at the end of the traverse.
[134] The terrain of traverse C (Figure 25) transitioned

through more different surface compositions than the hy-
pothesis labelings anticipated. The hypothesized geologic
units implied a mostly homogeneous traverse with a single
discrete transition at the base of a hill. In fact, the bare
approach to the hill was punctuated by an unanticipated
patch of cobbles. At image 683, the rover encountered the

Figure 23. Traverse A.

G04S03 SMITH ET AL.: SCIENCE AUTONOMY

20 of 23

G04S03



first evidence of the hill - a few rocks sourced from its peak.
The rover started to climb the slope at image 724 through an
increasing density of rocks. By image 790 it was deep in
this hilltop field of rocks, which it navigated for the rest of
the traverse. The only other interruption was a bare, sandy
region beyond the peak beginning at image 1083.
[135] The HMM performed reasonably well on this tra-

verse and captured most of the variation in surface material
in each Viterbi parse. The differences between runs of the
algorithm concerned the placement of transition points
along the gradients and alternate interpretations of the
material surrounding the peak. The fully autonomous ‘‘nav-
igation image only’’ version treated the gradient of rocks as
a series of discrete transitions, while the 3-state HMM used
its extra descriptive power to model the slope as a separate
geologic unit.
[136] The boundary-crossing traverses of LITA site F are

a small but typical sample of boundaries scientists might
encounter on a wide-area rover survey. Several aspects of
the LITA data set are challenging. LITA scientists inten-
tionally avoided rough terrain so most of these transitions
concerned relatively minor variations in the composition of
surface material. Moreover, the quality of image data
available for processing was relatively poor—a 320 �
120 pixel subimage from each location. Nevertheless the
power of compounded evidence from multiple images
permitted the HMM algorithm to identify meaningful
boundaries in two out of three traverses. This was the case
even the algorithm relied on surface imagery alone. This
ability could assist planetary exploration robots in validat-
ing hypothesized boundaries, autonomously following geo-
logic contacts for mapping purposes, or recognizing

unexpected boundaries to trigger adaptive measurement
actions.

7. Conclusion and Future Work

[137] The Life in the Atacama campaign provided an
outstanding test bed for autonomous science by collecting
massive data sets with a rover in Mars-analog terrain,
employing a strategy of long traverses suited to responsive
science on the fly, and driving innovations with its chal-
lenging science objectives. Science autonomy technology
also returned benefits to the science investigation—by
autonomously responding to evidence of life, the rover
improved the efficiency of its life detection measurements
and saved significant time and experimental materials
(section 3).
[138] In the future, highly capable Mars rovers will drive

longer distances and will face the communications bottle-
necks inherent in over-the-horizon science. As we have
shown, autonomous science can overcome these difficulties
by adaptively planning data collection and return decisions
that best match scientists’ exploration goals.
[139] The breadth of the LITA experiments underscores

the fact that autonomous geology is not a single technology
but rather a growing field of techniques and procedures. All
four of the systems described in this paper were evaluated
against simpler nonreactive exploration or data return strat-
egies and showed significantly improved data quality. They
used images collected during long rover traverses in a
natural environment, with all the resulting challenges of
varying lighting, partially buried rocks, and a broad spec-
trum of underlying geology. Table 3 summarizes the

Figure 24. Traverse B.

Figure 25. Traverse C.
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improvements in data return quality demonstrated by each
of the experiments.
[140] In addition, there were several specific technical

contributions:
[141] 1. The first demonstration of a science rover auton-

omously responding to the detection of life in the field
(section 3).
[142] 2. Improved geologic classification using a machine

learning framework that can cleanly integrate a variety of
image processing techniques and data from multiple sensor
types (section 4).
[143] 3. The first demonstration of autonomous mapping

that takes both prior maps and rover science observations
into account, and the first rover demonstration of a proba-
bilistic planner that can reason about potential future science
opportunities (section 5).
[144] 4. The first demonstration of automatic site charac-

terization that fuses orbital and surface imagery (section 6).
[145] Our plans for future work extend in several direc-

tions. We plan to integrate aspects of the separate systems
and remove simplifying assumptions, moving onboard
science autonomy closer to flight readiness. We plan to
apply our automated analysis techniques to existing Mars
rover data sets. Finally, we are developing a theory of
optimal control for robotic exploration tasks when the goal
is to answer specific scientific questions.
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